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Low-Temperature Lithium Batteries [EVIaU\=Rial-Nalle]laly \

NASA SBIR Phase Il Project (starting soon)

“Solid-State Rechargeable Batteries for Extreme Lunar Surface
Environments”

Image credit: NASA

Future science (& ISRU) missions to the lunar surface require hardware, electronics and energy storage systems that can

tolerate the extreme low temperatures of the lunar night.
Continuous or intermittent operation throughout the night. (-180 °C at night)
Tolerate the night and wake up and operate at the Lunar dawn. (+120 °C middle of day)

The low temperature performance of lithium batteries is limited by several factors:

Conductivity of the liquid electrolyte below -20 °C.
Resistance of the solid electrolyte interface (SEI) or the cathode electrolyte interface (CEl).
Charge transfer resistance of the SEl and/or CEl (moving lithium ions into and out of the solid electrodes).

Existing lithium batteries must be housed in temperature regulated chambers kept between 0 °C and +40 °C.
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NASA — Solid State Battery (SBIR focus) — survive the lunar night

The long-term goal is to develop a solid-state battery

No liquid electrolyte.

Nanoporous solid polymer electrolyte.

Extreme low and high temperature tolerance.

Push the boundaries of what is possible now.

Focus on extreme low temperature performance (-60 °C or lower).
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Polymerizable Liquid Crystals with Li* Conductivity

« Contain one or more hydrophobic organic tails and a charged headgroup.

. self-organize into liquid crystal structures.

« The tails can be cross-linked to their nearest neighbors in situ to form robust polymer networks that retain the original structure.

« Designed to be (electro)chemically stable.

« The bi-continuous cubic phase has a 3-dimensional interconnected pore structure that conducts lithium ions (high conductivity).
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Self-assembling liquid crystals for nanoporous polymers
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Li* Conductivity of Glass, TDA’s Polymer and Liquids

Li+ Conductivity vs. Temperature
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Conductivity is not the entire story: charge transfer resistance is also important
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Low temperature liquid electrolytes w/artificial CEl

NASA-funded work at UCSD Low temp liquid electrolyte plus our artificial CEl
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EIS of coin cells

working electrode at cathode / reference at lithium anode
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Resistance: Electrolyte, CEI(SEl) and Charge Transfer
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Discharge Profiles vs. Temperature
TDA vs. Commercial-of-the-Shelf
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Prototype Low Temperature batteries vs. off-the-shelf battery
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Stability: coated cathode vs. no coating

Discharge Capacity - NMC 811 ® NMC811 | uncoated
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Conclusions & Future Work

 When charged at 22 °C, vastly improved discharge capacity, voltage and energy when next discharged at -40 °C or -60 °C.

* >250 Wh/kg at the cell level at -45 °C (automotive electronics rated -40 °C).

* > 150 Wh/kg at -55 °C (military electronic rated -55 °C).

* ADVANTAGEOUS to house batteries and electronics in chamber designed to maintain -55/-40 °C to +40 °C.
* Reduced thermal management mass & volume.

* Higher specific energy at low temp — reduce battery mass.

* Primary application target: small landers, rovers, lunar surface instruments, robots (ISRU).

e Other applications: high-altitude balloons, electric powered aircraft, EVs in cold climates
e  Future work:
— Demonstration of prototype cells at cryogenic temperatures / relevant environments.
— Partnering with battery producers for full battery cell production.
— Tech demo: high-altitude balloon / then lunar demo?
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We are Interested in Feedback from the SRR community

 What performance improvements in rechargeable batteries are most important for your
cislunar application?

e Please reach out if you wish to collaborate on:

— Low-temperature battery testing / 3™ party validation

— Suborbital battery technology demonstrations

— Shared payload for orbital / lunar technology demos

— Potential integration of flight certified batteries into future missions or mission planning

TDA Research, Inc.
Brian Elliott
belliott@tda.com
I|_AI 4663 Table Mountain Drive, Golden, Colorado 80403 @
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Questions?
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